Kreisspiegelung
Die Spiegelung am Kreis oder Kreisspiegelung ist eine Abbildung der ebenen Geometrie, die das Innere und das Äußere eines gegebenen Kreises miteinander vertauscht.
Die Abbildung ist winkeltreu und zählt zu den speziellen konformen Transformationen.
Eine Kreisspiegelung ist der ebene Fall einer (geometrischen) Inversion. Eine Inversion im Raum ist die Spiegelung an einer Kugel, kurz Kugelspiegelung, mit ähnlichen Eigenschaften wie die der Kreisspiegelung.

Definition
Für die Kreisspiegelung an einem Kreis mit Mittelpunkt und Radius ist der Bildpunkt eines Punktes dadurch festgelegt, dass auf einer Strecke bzw. auf einer Halbgeraden liegen und die Bedingung
erfüllen muss.[1] Dabei darf der ursprüngliche Punkt nicht mit dem Mittelpunkt übereinstimmen. Gelegentlich umgeht man dieses Problem, indem man einen neuen Punkt zur Ebene hinzufügt und diesen als Bildpunkt von definiert. Der Bildpunkt dieses neuen Punktes ist der Mittelpunkt des Inversionskreises. Häufig ist nur der Mittelpunkt nicht jedoch der Radius wichtig, sodass man einen Kreis mit beliebigem Radius (z. B. 1) zeichnen kann.
Analytische Beschreibung
Ist in einem kartesischen Koordinatensystem der Ursprung, so lässt sich die Spiegelung an dem Kreis durch
beschreiben.
In ebenen Polarkoordinaten besitzt eine Kreisspiegelung eine besonders einfache Darstellung:
- .
Die Spiegelung am Einheitskreis ist dann
und rechtfertigt die Bezeichnung Inversion.
In der Funktionentheorie behandelt man die Inversionen und die von ihnen erzeugten Kreisverwandtschaften am besten in der komplexen („Gaußschen“) Zahlenebene. Eine Inversion am Einheitskreis wird dabei durch die Abbildung beschrieben.[2] Darin bezeichnet eine komplexe Zahl und die zugehörige konjugiert komplexe Zahl.
Konstruktion
Mit Zirkel und Lineal

- Liegt auf dem gegebenen Kreis, so ist gleich .
- Falls der Punkt im Kreisinneren liegt (Bild 1), zeichnet man die zur Halbgeraden senkrechte Kreissehne durch und die beiden Kreistangenten in den Endpunkten dieser Sehne. ergibt sich dann als Schnittpunkt dieser Tangenten.
- Liegt der Punkt dagegen außerhalb des Kreises, so beginnt man mit den beiden Kreistangenten durch mithilfe des Thaleskreises. Anschließend bringt man die Verbindungsstrecke der beiden Berührpunkte mit der Halbgeraden zum Schnitt. Der Schnittpunkt ist der gesuchte Bildpunkt .
Der Beweis, dass man so den Bildpunkt erhält, folgt direkt aus dem Kathetensatz.
Mit Zirkel allein
Für die folgenden Konstruktionen nach Mascheroni gilt:
Das einzige Zeichenhilfsmittel, welches in diesem Abschnitte gebraucht werden darf, ist der Zirkel; nur das Schlagen von Kreisbogen ist erlaubt; es darf in der Konstruktion nicht eine einzige gerade Linie gezeichnet werden.[3]
- Die trotzdem eingezeichneten gestrichelten bzw. gepunkteten Linien haben keine konstruktive Funktion, sie dienen lediglich der Verdeutlichung und dem Beweis.
Spiegelung eines Punktes

- Liegt der Punkt außerhalb des Inversionskreises (Bild 2), so zeichnet man um einen Kreis durch den Mittelpunkt des Inversionskreises. Dieser schneidet den Inversionskreis in zwei Punkten. Zeichne auch um diese Punkte Kreise durch den Mittelpunkt. Diese beiden Kreise schneiden sich nun im Bildpunkt .
- Liegt auf dem Inversionskreis, so ist keine Konstruktion notwendig, es gilt
- Liegt innerhalb des Inversionskreises, kann z. B. mithilfe einer Einteilung der möglichen Lagen des Punktes in drei Bereiche (Bild 3–5), eine deutliche Vereinfachung des Konstruktionsaufwandes für zwei Bereiche erreicht werden. Hierfür stellt man sich, quasi gedanklich, eine Kreisfläche (hellgrau) vor, deren Radius gleich ist dem halben Radius des Inversionskreises. Für die eigentliche Konstruktion ist die Kreisfläche (hellgrau) nicht erforderlich. Die drei Bereiche der möglichen Lage des Punktes , meist gegeben als Abstand zum Mittelpunkt des Inverskreises, und die dafür möglichen Konstruktionsmethoden sind:
- Der Abstand des Punktes zu (Bild 3) ist größer als der halbe Radius des Inversionskreises, d. h.
- Zuerst wird um den Punkt ein Kreis mit Radius gezogen. Dieser schneidet den Inversionskreis in den Punkten und Die abschließenden Kreise um und mit den Radien bzw. liefern den Bildpunkt
- Der Abstand des Punktes zu (Bild 4) ist gleich dem halben Radius des Inversionskreises, d. h.
- Zuerst wird um den Punkt ein Kreis mit Radius gezogen und anschließend, mittels dreimaligem Abtragen dieses Radius ab dem Punkt , sein Durchmesser bestimmt. Als Nächstes wird der letzte Kreis mit dem Radius um den Punkt gezogen. Abschließend bedarf es noch eines zweimaligen Abtragens dieses Radius, ab den soeben erzeugten Schnittpunkt um den Bildpunkt zu erhalten.



- Der Abstand des Punktes zu (Bild 5) ist kleiner als die Hälfte, aber größer als ein Achtel des Radius des Inversionskreises, d. h.
- Im nebenstehenden Bild 5, veranschaulicht die kleine Kreisfläche (rosa) ein Achtel des Radius des Inversionskreises. Für die eigentliche Konstruktion ist die Kreisfläche (rosa) nicht erforderlich. Dies gilt ebenso für die eingezeichneten gepunkteten Linien; sie sollen lediglich einen Vergleich mit der Konstruktion Mit Zirkel und Lineal verdeutlichen.
- Zuerst wird um den Punkt ein Kreis mit Radius gezogen und anschließend, durch ein dreimaliges Abtragen dieses Radius, sein Durchmesser bestimmt. Es folgt ein Kreisbogen um mit Radius auf dem, analog zuvor, der Durchmesser erzeugt wird. Nun wird ein Kreisbogen um mit Radius gezogen, der den Inversionskreis in und schneidet. Je ein Kreisbogen um und mit den Radien bzw. schließen sich an und schneiden sich in Um wird ein Kreisbogen mit Radius gezogen auf dem, analog zuvor, der Durchmesser erzeugt wird. Als Nächstes wird der letzte Kreis mit dem Radius um den Punkt gezogen. Abschließend bedarf es noch eines dreimaligen Abtragens dieses Radius, ab dem Punkt um den Bildpunkt zu erhalten.
- Universelle Methode für Liegt innerhalb des Inversionskreises:
- Zunächst halbiert man den Radius des Inversionskreises so oft, bis man einen neuen Kreis erhält, der den Punkt nicht mehr enthält. (Dies ist mit Zirkel allein möglich.) Anschließend konstruiert man wie oben (Bild 2) den Bildpunkt von , wobei die Inversion am neuen Kreis durchgeführt wird. Zuletzt verdoppelt man den Abstand des Bildpunktes doppelt so oft wie man den Radius halbiert hat. (Auch dies ist mit Zirkel allein möglich.) Dieser Punkt ist der gesuchte Bildpunkt.
- Auf Grund der Komplexität dieses Verfahrens wird man die Konstruktion wohl kaum durchführen, sie bietet aber eine Möglichkeit den Satz von Mohr-Mascheroni zu beweisen, der besagt, dass man mit Zirkel allein alle Konstruktionen durchführen kann, die mit Zirkel und Lineal möglich sind.
Spiegelung einer Geraden
- Aufgabe
(Siehe hierzu Bild 6)

Die gestrichelte Gerade () und die gepunktete Linie haben keine konstruktive Funktion, sie dienen lediglich der Veranschaulichung.
;

Spiegelung einer Geraden in 15 Bildern
Geraden, die nicht durch den Mittelpunkt des Inversionskreises verlaufen, werden auf Kreise abgebildet, die durch den Mittelpunkt gehen (siehe Eigenschaften).
Die (imaginäre)[4] Gerade (definiert durch die Punkte und ) ist am Inversionskreis zu spiegeln, um den Kreis zu erhalten.[5]
- Definieren der Geraden :
- Nach dem Einzeichnen des Inversionskreises um den Mittelpunkt , mit beliebigem Radius, wird der Kreisbogens um ebenfalls mit beliebigem Radius gezogen. Die anschließend auf mit beliebiger Position festgelegten Punkte und definieren die Gerade .
- Bestimmen des Punktes (Mitte der Strecke ):
- Die Punkte und werden bestimmt mittels Radius um und , dies ermöglicht eine Gerade durch und , sie steht senkrecht auf die Gerade ; Punkt entsteht mittels Radius um und Radius um ; die Punkte und werden bestimmt mittels Radius um und Radius um ; nach einem Kreisbogen mit Radius um und einem Kreisbogen mit gleicher Zirkelöffnung um ergibt sich der gesuchten Punkt .
- Der Mittelpunkt des Inversionskreises an der Geraden gespiegelt ergibt einen Punkt :
- Die Punkte und werden auf dem Inversionskreis mittels Radius um bestimmt; Punkt erhält man mittels Radius um und ; Punkt ergibt sich mittels Radius um und ; je ein Kreisbogen mit Radius um und liefert den gesuchten Punkt .
- Der Punkt am Inversionskreis gespiegelt ergibt einen Punkt (Spiegelung eines Punktes):
- Die beiden Kreisbögen mit Radius um und liefern den gesuchten Punkt .
- Dieser Punkt am Inversionskreis gespiegelt ergibt den Mittelpunkt des Kreises als Spiegelbild der Geraden :
- Der gezogene Kreisbogens um mit Radius liefert die Punkte und auf dem Inversionskreis . Nun bedarf es nur noch zweier Kreisbögen mit Radius um Punkt und Punkt , somit ist der gesuchte Mittelpunkt gefunden und der Kreis kann abschließend mit dem Radius oder gezogen werden.
In einer korrekten Konstruktion ergibt sich die Beziehung[5]
Spiegelung eines Kreises

Die gestrichelten Tangenten (dunkelblau) und die gepunkteten Linien haben keine konstruktive Funktion, sie dienen lediglich der Veranschaulichung.

Spiegelung eines Kreises in 16 Bildern
- Aufgabe
(Siehe hierzu Bild 7)
Der Inversionskreis ist am Inversionskreis zu spiegeln, um den Kreis zu erhalten.[6]
- Konstruktion des Mittelpunktes des Inversionskreises und dessen (imaginären)[7] Tangenten und :
- Nach dem Einzeichnen des Inversionskreises um den Mittelpunkt mit beliebigem Radius positioniert man den Punkt beliebig auf der Kreislinie, dies ermöglicht eine (imaginäre)[4] Gerade durch und . Der Radius ist auf der Kreislinie viermal abzutragen, Schnittpunkte sind und . Es folgt der Kreisbogen mit Radius um Punkt . Der Punkt ergibt sich mittels Radius um ; durch nochmaliges Abtragen des Radius um Punkt erhält man den Mittelpunkt des Inversionskreises .
- Der Mittelpunkt des Inversionskreises an dem Inversionskreises gespiegelt ergibt einen Punkt (Spiegelung eines Punktes):
- Der eingezeichnete Inversionskreis erzeugt die Punkte und . Dies ermöglicht jetzt die beiden Tangenten (blau gestrichelte Linien) und des Kreises mit dem Scheitel und den Berührpunkten und sowie die Gerade durch und , sie steht senkrecht auf die Gerade durch und . Die Punkte und werden bestimmt mittels Radius um und ; Punkt wird bestimmt mittels Radius um und Radius um ; die Punkte und entstehen mittels Radius um und Radius um ; die beiden Kreisbögen mit Radius um und liefern den gesuchten Punkt (Mitte der Strecke ).
- Dieser Punkt am Inversionskreis gespiegelt ergibt den Mittelpunkt des Kreises als Spiegelbild des Inversionskreises :
- Die Punkte und werden bestimmt mittels Radius um ; die beiden Kreisbögen mit Radius um und liefern den Punkt . Die beiden Punkte und erzeugt der Radius um . Nun bedarf es nur noch zweier Kreisbögen mit Radius um Punkt und Punkt . Somit ist der gesuchte Mittelpunkt gefunden und der Kreis kann abschließend mit dem Radius gezogen werden.
In einer korrekten Konstruktion ergibt sich die Beziehung[5]
Mit anderen Hilfsmitteln
Es gibt mechanische Geräte, die speziell für die Inversion am Kreis konstruiert wurden, zum Beispiel den Inversor von Peaucellier.
Eigenschaften
- Die Abbildung vertauscht Inneres und Äußeres des Inversionskreises, die Punkte auf dem Rand sind Fixpunkte.
- Wendet man die Inversion zweimal an, so erhält man wieder die Ausgangssituation, die Inversion ist also eine Involution.
- Die Inversion ist eine konforme Abbildung, d. h., sie ist winkeltreu. Insbesondere werden Objekte, die einander berühren, auch wieder auf solche abgebildet.
- Die Inversion kehrt wie die Geradenspiegelung die Orientierung um.
- Geraden, die durch den Mittelpunkt des Inversionskreises verlaufen, werden auf sich selbst abgebildet.
- Geraden, die nicht durch den Mittelpunkt des Inversionskreises verlaufen, werden auf Kreise abgebildet, die durch den Mittelpunkt gehen.
- Kreise, die durch den Mittelpunkt des Inversionskreises verlaufen, werden auf Geraden abgebildet, die nicht durch den Mittelpunkt gehen.
- Kreise, die nicht durch den Mittelpunkt des Inversionskreises verlaufen, werden wieder auf solche Kreise abgebildet. Allerdings wird der Mittelpunkt des ursprünglichen Kreises durch die Inversion nicht auf den Mittelpunkt des Bildkreises abgebildet.
- Insbesondere werden Kreise, die den Inversionskreis rechtwinklig schneiden, auf sich selbst abgebildet.
Da die Inversion also nicht geradentreu ist, ist sie im Gegensatz zur Punkt-, Achsen- oder Ebenenspiegelung keine Kongruenzabbildung.
Literatur
- Coxeter, H. S. M., und S. L. Greitzer: Zeitlose Geometrie, Klett Stuttgart 1983
- Roger A. Johnson: Advanced Euclidean Geometry. Dover 2007, ISBN 978-0-486-46237-0, S. 121–127 (Erstveröffentlichung 1929 bei der Houghton Mifflin Company (Boston) unter dem Titel Modern Geometry), S. 43–57
Weblinks
- Vladimir S. Matveev: Inversion am Kreis (Kreisspiegelung). Teil eines Skripts zur Linearen Algebra der Uni Jena (PDF; 828 kB).
- Inversion auf cut-the-knot (engl.)
- Eric W. Weisstein: Inversion. In: MathWorld (englisch).
Einzelnachweise
- Coxeter, H. S. M.; Greitzer, S. L.:Geometry Revisited. Washington, DC: Math. Assoc. Amer. 1967, S. 108 5.3 Inversion (Auszug (Google)) – englische Originalausgabe von Zeitlose Geometrie.
- David A. Brannan, Matthew F. Esplen, Jeremy J. Gray: Geometry. Cambridge University Press 1999, 2. Auflage 2011, ISBN 978-1-107-64783-1, S. 281–283 (Auszug (Google))
- August Adler: Theorie der geometrischen Konstruktionen. G. J. Göschensche Verlagshandlung, Leipzig 1906, III. Abschnitt, Konstruktionen, ausgeführt durch bloßes Schlagen von Kreisbogen (Mascheronische Konstruktionen), § 14. Hilfssatz. S. 92 bzw. 106, S. 92 (archive.org [abgerufen am 26. Dezember 2023]).
- ist imaginär wegen der Ausführung als Konstruktion nach Mascheroni (siehe Mit Zirkel allein, im Folgenden nur „Gerade“ genannt)
- August Adler: Theorie der geometrischen Konstruktionen. G. J. Göschensche Verlagshandlung, Leipzig 1906, III. Abschnitt, Mascheronische Konstruktionen, § 20.2. Konstruktion des Mittelpunktes jenes Kreises, welcher einer gegebenen Geraden oder einem gegebenen Kreise in Bezug auf Kreis K invers entspricht. S. 112–114, S. 126–128 (archive.org [abgerufen am 14. Dezember 2023]).
- August Adler: Theorie der geometrischen Konstruktionen. G. J. Göschensche Verlagshandlung, Leipzig 1906, III. Abschnitt, Mascheronische Konstruktionen, § 20.2. Konstruktion des Mittelpunktes jenes Kreises, welcher einer gegebenen Geraden oder einem gegebenen Kreise in Bezug auf Kreis K invers entspricht, S. 112–114, S. 126–128 (archive.org [abgerufen am 14. Dezember 2023]).
- ist imaginär wegen der Ausführung als Konstruktion nach Mascheroni (siehe Mit Zirkel allein, im Folgenden nur „Tangente“ genannt)